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Two-Temperature Hydrodynamics and Multiple 
Sound Modes in Disparate-Mass Gas Mixtures 
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Gas mixtures of heavy plus light molecules can apparently support several 
different sorts of sound waves (the most recent such prediction is that of Campa 
and Cohen). The origin of the first such predictions is reviewed, along with the 
development of the two-temperature hydrodynamic equations which govern 
these mixtures at moderate wavenumbers and frequencies. Light scattering in 
the two-temperature regime is also discussed. Experiments in both sound 
propagation and light scattering are shown to confirm the existence of a 
two-temperature regime, and two simultaneous sound modes, in these 
disparate-mass gas mixtures. 
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1. I N T R O D U C T I O N  

Gas mixtures of heavy plus light molecules can support  several different 
sorts of sound waves (the mos t  recent prediction of  an effect of this sort is 
that  of C a m p a  and Cohen(i)). The possibility of such an effect was first 
pointed out  by Huck and Johnson  in 1980. (2,3) The present paper  reviews 
the basis of this prediction and its experimental confirmation. The effect 
occurs at frequencies for which ordinary hydrodynamics  is not  valid; the 
development  of  two-temperature  hydrodynamic  equations which can 
correctly describe the regime in question is therefore also reviewed. 

At low frequencies, one can expect sound propagat ion  in a gas to 
behave simply, with a sound velocity independent  of frequency, and 
absorpt ion propor t ional  to frequency. The "low" frequencies in question 

1 Blackett Laboratory, Imperial College, London SW7 2BZ, United Kingdom. 

647 

0022-4715/89/t 100-(;647506.00/0 �9 I989 PLenum Publishing Corporation 
822/57/3-4-15 



648 Johnson 

are required to be low in comparison with all the characteristic internal 
frequencies of the system. For monatomic gases, these are simply the 
inverse relaxation times for gas parameters such as density or velocity 
fluctuations. (4) For single-species noble gases, or for mixtures of com- 
parable atomic weights, these frequencies are all of similar magnitude 
(say, Vo), of the order of an inverse mean free time. The "low-frequency" 
regime is thus at least qualitatively well defined: co ~ vo. In this regime, 
processes in the gas are correctly described by ordinary hydrodynamics, 
together with linear constitutive relations, with material parameters (such 
as thermal conductivity) which are calculable by the well-known methods 
of Chapman and Enskog. ~5~ 

Although the hydrodynamic equations and their related transport 
coefficients are derived from the Boltzmann equation, <4) the predictions of 
that equation have a much broader range of application. In particular, the 
Boltzmann equation should in principle be capable of giving correct predic- 
tions for gas behavior in the kinetic regime, that is, for processes involving 
frequencies of the order of intrinsic relaxation frequencies (or, alternatively, 
length scales of the order of a mean free path)/4) 

2. TWO-TEMPERATURE H Y D R O D Y N A M I C S  FOR 
DISPARATE-MASS GASES 

A disparate-mass gas mixture is one composed of very heavy plus very 
light molecules. Multiple sound modes in gases seem to be one charac- 
teristic possibility for systems of this type. 

It was first pointed out by Grad ~6} that a disparate-mass gas mixture 
would have an internal relaxation frequency much lower than that of either 
of its separate constituents. This means that the breakdown of 
hydrodynamics and the onset of the kinetic regime happen at much lower 
frequencies in such mixtures than in more ordinary gases and gas mixtures. 
The multiple sound modes predicted by Huck and Johnson (2'3) occur in 
precisely such mixtures and at such frequencies. Correct physical predic- 
tions will thus depend upon the existence of a theoretical description of 
these mixtures valid at these frequencies. 

In a pure monatomic gas, the inverse mean free time gives the correct 
order of magnitude for the frequency of any sort of perturbation, for 
instance, in momentum or energy, to relax to equilibrium. In a 
disparate-mass mixture, on the other hand, the kinematic effects of two 
very different atomic masses, 

ml/m2 4~ l (1) 
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result in very diffent relaxation times for different molecular properties. As 
originally pointed out by Grad, (6) if the light-species momentum relaxation 
time v 1 is taken as reference, then 

Y1 ,~ (T1) - 1  (2) 

where ~t is the light-species self-collision time. The much lower frequency 
vz for self-collisions among the heavy molecules 

v2~(r2) ~ (3) 

is of order 

v2 ~ 6vl (4) 

for comparable number densities n t ~ n2, where 

6 = ( r n l / m z )  1/z ,~ 1 (5) 

while the lowest frequency of all is that with which the light-species kinetic 
energy comes to equilibrium with that of the heavy species: 

va ~ (mt /m2)  vi,  v~ ~ vl ,  v2 (6) 

The laws of Newtonian mechanics imply this inefficient exchange of kinetic 
energy between light and heavy species, a fact which led Grad (61 to predict 
the possibility that under appropriate circumstances the two components of 
such a mixture could support different temperatures. 

The regime of interest here is the frequency regime 09 ~ v s. In this 
regime, disparate-mass gas behavior indeed departs from that of more 
normal gases. Nevertheless, an approximate description emerges which is 
very like that of hydrodynamics, while allowing extra degrees of freedom 
which include the possibility of different temperatures for the different 
species in the mixture, as predicted by Grad. (6) In what follows the 
generalized two-temperature hydrodynamic description developed by 
Goebel et al. (7 9) will be used. These equations have been derived from a 
Grad 13-moment type expansion (t~ of the Boltzmann equations for the 
two coupled species of the mixture. It is assumed that (mt /m2)  1/2=- 6 ~ 1 
and that neither mole fraction xi is so small as to be of order 6. 

A key variable in these equations is the temperature separation 

A ~ T 2 - -  T 1 (7) 

between the species. This is obtained from the defining equations 

3n ikT  i = f (m]2)(v - U,.) 2 J~. dv (8) 
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with n~ the number density of species i, Uz its flow velocity, f / the  distribu- 
tion function of species i, v its molecular velocity, and k Boltzmann's 
constant. Instead of separate temperatures Ti, the alternative variables d 
and T will be used, where T is the common temperature given by 

I (m~/2)(v - U) 2 f~ dv (9) 
i 

Similarly, the overall mixture flow velocity U and the diffusion velocity 

W - U2  - U1 (10)  

will be used in place of the separate species flow velocities Ui given by 

HiUi: f vfidv (11) 

The flow equations which result from this approach reduce to familiar 
Euler/Navier-Stokes equations for low frequencies ~o ~ v~ [v~, introduced 
in (6), is the relaxation time for the temperature difference A of (7)]. In the 
regime of interest (~o,~ v~), however, one obtains instead 

(Opl /Dt)+plV.U-V.p lW=O (12a) 

(Dp2/Dt)+pzV.U=O (12b) 

pz(DU/Dt)+V(nxkTl+n2kTz)+V. {P2}=0 (13) 

(D/Dt)(~nkT)+~nkTV'U+V'(qlo+q2o)+{P2}:VU=O (14) 

Here D/Dt=(O/Ot+U.V) is the derivative with respect to flow, n=  
(nl + n2) the overall number density, and Pi = nim~ the/-species mass den- 
sity. The qi and {P/} are, respectively, the heat flux and the symmetrized 
traceless pressure tensor of species i taken in the rest frame of that species, 
and q~o is the heat flux of species i taken with respect to the overall flow 
velocity of the gas; in the present approximation 

qlo = q l -  ~nlkT1W, q2o = q2 (15) 

In (12) (14), the only first-order terms are those involving {P2} and q2; all 
other terms are present to lowest order ("Euler" level) in the regime ~o ~ v~. 

Supplementing the flow equations (12)-(14), one has the constitutive 
equations, which in the present approximation become 

W=(D/x2)Vlnpl (pi=nikTi) 

{P2} = -2 2{v. u }  

qi : - - 2 i V T i  

(16)  

(17) 

(18) 
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Explicit forms for the transport coefficients D, #2, and 2~ are given in the 
Appendix. The final equation governing temperature separation 3 is 
peculiar to a disparate-mass gas in the two-temperature regime: 

( D / D t ) A  + 2jV" U -- (2knl)V "qlo - ( T 1 / n l ) V "  (n,W) 

+ (~kn2)[V" q2 + { P2}:VU] = - v ~ A  (19) 

For low-frequency phenomena, (19) is of second order and is therefore not 
retained in any ordinary hydrodynamic equations. In the two-temperature 
regime of a disparate-mass gas, however, its contribution (except for the 
final bracket on the left) is of lowes t  order. The equations (12)-(19) were 
predicted by Goebel et al. ~7 97 to govern the behavior of a disparate-mass 
gas in the two-temperature regime in the same way that the ordinary Euler/ 
Navier-Stokes equations govern ordinary gas mixtures for all phenomena 
of low enough frequency. 

3. T W O - T E M P E R A T U R E  H Y D R O D Y N A M I C S  N E A R  
E Q U I L I B R I U M  

Given the prediction that there should be a regime in which a 
disparate-mass gas behaves in accordance with two-temperature 
hydrodynamics, one may ask what sort of physical effects might bear a 
characteristic "two-temperature" signature. The simplest should be linear 
effects (involving only small deviations from equilibrium), but effects 
characterized either by frequencies co ~ v3 or by length scales L ~ ( m z / m l ) l ,  
where l is a mean free path. The propagation of forced sound of frequency 
co ~ v3 is an obvious example of the former type, while light scattering for 
wavenumbers 

k ~ v3 /Vo  (20) 

is an example of the latter (V o is the equilibrium speed of sound). 

3.1. Sound  Propaga t ion  

The behavior of small perturbations from equilibrium in the gas in the 
two-temperature regime can be predicted by linearizing (12)-(14) and 
(16) (19) about equilibrium values of the number densities nio, tem- 
perature To, and pressure Po. For sound propagation, one assumes that 
deviations from equilibrium take the form e x p [ i ( k x - c o t ) ] ,  so that density 
fluctuations, for instance, are given by 

n i = nio { 1 + ni exp [ i ( k x  - cot)] } (21) 
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The governing equations are then written as equations in the dimensionless 
amplitudes for these deviations, defined in similar fashion to the amplitudes 
~i of (21). The deviation amplitudes of interest here are those for the flow 
velocity U, overall temperature T, diffusion velocity W, pressure deviator 
( - { P } x x / P o ) ,  heat fluxes qi, and temperature separation z~. Temperature 
amplitudes are made dimensionless by reference to To, velocity amplitudes 
by reference to the characteristic speed 

c - (po/Po) 1/2 (22) 

(Po is the equilibrium mass density Plo + P2o), and heat fluxes by reference 
to (poc). Defining the reduced wavenumber z by 

z - kc/co (23) 

we find that the equations governing sound propagation take the following 
simple form: 

Conservation equations: 

nl = z ( U -  I}'),  ~2=zU (24) 

U= z I ~  (xifii) + 7"+/3 ] (25) 

_ 2 
T= ~ ~,. (xi~ + z0~) (26) 

Constitutive equations: 

I711= (i05z)/3(~ + ] ' -  x2 3) (27) 

P = -(i05z) tiC7 (28) 

01 = -( i05z)  I I ( T -  x2A)  (29) 

02 = -(i05z) ~2(I'+ xl 3) (30) 

3 = -( i05z)  ?[ lg'+ (qz/x2)- (01/xl)] (31) 

Here x~ is the mole fraction for species i, while/3, /~, ~,  and ~ are dimen- 
sionless transport coefficients defined in the Appendix, (A.6) (A.9). The 
frequency 05 is made dimensionless with respect to the reference frequency 
v a, given by 

v~ = 2c2x2/D (32) 

[-an explicit expression is also given in (A.4a)]. 
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The dispersion relation governing sound propagation is that for 
z=z(~5) or c5=(5(z) obtained from (24)-(31), above; for forced sound 
propagation at a given frequency, the former is the appropriate relation, 
with c5 real and positive. At tow frequencies, one expects one root of this 
equation to correspond to plane-wave propagation in the + x  direction. 
That root is then identified by its low-frequency behavior: 

dispersion: Re[(5/3) 1/2 z] = Vo/V~ 1 (33) 

co- ,0  + 

absorption: Im[(5/3) m z] = c~ ~ 0 (34) 

co ---~ 0 + 

where V is the speed of propagation at frequency co. 

3.2. Light Scat ter ing 

Light scattering probes the behavior of density fluctuations in a gas 
through the density correlation function S(k, co). The information one 
obtains about a gas from light scattering is complementary to that 
obtained from sound propagation, in the sense that one is probing a 
different region of the dispersion relation in the space of complex k and co. 
An experiment specifies the wave number of the density fluctuations being 
probed (fixed, real k), and the spectrum of the scattered light is observed 
for this wavenumber. The frequency co of interest is the frequency shift co = 
cos-coi between the scattered (s) and incident (i) radiation; o9 is real, and 
in the range -t-oo. 

For S(k, co), the hydrodynamic regime is the one in which 

k ~ Vo/C (35) 

where v o is the lowest intrinsic relaxation frequency in the gas. For these 
wavenumbers k, one may expect to derive S(k, 09) from the linearized equa- 
tions of hydrodynamics, m) For higher wavenumbers such an approach is 
no longer adequate. However, for a disparate-mass mixture, there should 
exist a two-temperature regime 

v~/c<k~vl /c ,  v2/e (36) 

for which the linearized two-temperature equations should provide valid 
predictions. 

The analysis is analogous to that followed in Section 3.1 for sound 
propagation. The method is discussed in detail in, e.g., ref. 11; its 
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generalization to gas mixtures is discussed, for instance, in refs. 12 and 13. 
The spectral power density S(k, co) of light scattered by a dilute binary gas 
mixture can be written in terms of the /-species density fluctuation 
self-correlations Sii and the cross-correlations S,j as 

S(k, co) = N(Xla2Sll + 2xlaS12 + x2S22 ) (37) 

Here N is a normalization, and 

a -  ~1/~2 (38) 

is the ratio of the/-species optical polarizabilities ~i. 
Qualitatively, one expects the observed spectrum at low wavenumbers 

to show a single peak at co = 0 and two symmetrically-located satellite 
peaks at + Aco, where 

kVo= +aco (39) 

The peak at co = 0, and the widths of all peaks, relate to dissipative 
processes in the gas. 

4. C O M P A R I S O N  W I T H  E X P E R I M E N T  

The theoretical approach described here ~79) [Eqs. (12)-(14) and 
(16)-(19)] is approximate in several respects: it is based on a limited set 
of moments of the Boltzmann equation; it discards all terms of order 
32 =ml/m2 or smaller; and it assumes Maxwellian intermotecular forces 
(repulsion proportional to r -5, where r is intermolecular separation). The 
first two approximations result in noticeable discrepancies from the results 
of full multimoment type calculations such as those of Boley and Yip ~12) 
(the final approximation usually has a smaller effect). Detailed agreement 
with experiment cannot therefore be expected in the present approach. It 
can, however, be relied upon to offer a relatively simple way of predicting 
in a large-scale and qualitative way the differences between ordinary 
hydrodynamics and the two-temperature behavior of disparate-mass gases. 
In addition, it provides clear pointers to the physical nature of these 
differences, as well as indicating the correct physical regimes in which these 
differences should be evident. As will be seen in the following sections, 
experimental evidence for two-temperature gas behavior and for dual 
sound modes is, indeed, of such a gross and qualitative kind. 

Among the monatomic gases, the best readily-available candidate for 
a disparate-mass mixture is that of He and Xe, with a mass ratio 

ml/m2 = 4/131.3 (40) 
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The sound frequency range relevant to the existence of a two-temperature 
regime is of the order of 100 MHz at standard temperature and pressure 
rthis is the frequency given by (32)]. Wave numbers relevant to light 
scattering in the two-temperature regime are of order x~/2(5 • 104) cm-~ at 
standard temperature and pressure, from (36). The optical polarizability of 
Xe is much greater than that of He: 

a = ~1/~2 = 0.0514 (41) 

for light/14~ of wavelength 6328 ~. This fact implies, from (37), that one will 
only see density fluctuations in Xe, while cross-correlation effects, and the 
behavior of He in the mixture, must be inferred indirectly. 

The two-temperature regime is directly accessible to light scattering 
and to sound propagation experiments using available techniques. The 
existence of such a regime was first verified by the light scattering 
experiments of L e t a m e n d i a e t a l .  ~15'~6) and subsequently confirmed via 
sound propagation by Bowler. ~17-19) The phenomenon of dual sound mode 
interference in this regime was also confirmed by Bowler in these 
experiments.~7 19) Light scattering will be discussed first. 

4.1. Light Scatter ing 

Since light scattering experiments succeed in seeing only Xe in a 
He-Xe mixture, it is of interest to look at the governing equations insofar 
as they affect the heavy species alone. Dissipation is associated with trans- 
port, and governed by the constitutive equations (16)-(19). As was shown 
earlier,~7 9) temperature separation A, the diffusion velocity W, and the 
light-species heat flux ql comprise the sole zeroth-order dissipative 
mechanisms. Of these, it is only A that directly involves the behavior of the 
heavy species to lowest order. If ordinary hydrodynamics were instead to 
describe a disparate-mass mixture in the same (k, c~) regime, there would 
be no zeroth-order dissipation in the heavy species. This difference has a 
dramatic effect on the predicted spectral intensity. Figure 1 shows the 
calculated spectral intensity predicted by hydrodynamics ~15) for a He-Xe 
mixture in the two-temperature regime (dashed line). This is essentially the 
spectrum for Xe alone, and the absence of a visible central peak 
corresponds clearly to the strong suppression of dissipation predicted by 
hydrodynamics. The two-temperature calculation ~2~ (solid line), on the 
other hand, shows the mark of strong dissipation resulting from the 
possibility of a temperature separation in the mixture. The dots are the 
experimental points of Letamendia et aL~5): the central peak gives a very 
clear indication of the dissipation resulting from temperature separation in 
the mixture. 
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T 

Fig. 1. 
k=l.725x105cm -1, T=293K, 
temperature prediction (ref. 20); 
experimental points (ref, 15). 

' ok ~'o0 MHz 

co/  2 ~r P 

Light scattering spectrum in He-Xe for experimental conditions of Fig, 3c of ref. 15: 
p(Xe)=l.82atm, p(He)=2.65atm. Solid line, two- 
dashed line, hydrodynamic prediction (ref. 15); dots, 

The data of ref. 15 also indicate the experimental extent of this regime. 
The two-temperature regime should occur for reduced wavenumbers ~ of 
order unity, where 

k, - k c / v ~  (42) 

The strong discrepancies evident in ref. 15 between experiment and the 
predictions of hydrodynamics for He-Xe mixtures occur for all values of k 
in the range 

0.47 <~k~< 1.8 (43) 

(1.8 is the highest value of ~ tested in the mixtures), as expected from the 
two-temperature picture. 

4.2. Sound Propagat ion  

Two-temperature sound propagation predictions were obtained by the 
approach of Huck and Johnson (2'3'2x) outlined in Section 3.1. These proved 
of more than academic interest, since they suggested the possibility of 
several simultaneous "sound" modes in a disparate-mass gas mixture, for a 
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Fig. 2: 
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Dispersion in He Xe for various He mole fractions x 1. Solid lines: sound mode; 
dashed lines: interfering mode. 

narrow range of compositions at a high enough frequency, or, alternatively, 
a dispersion which should show a large-scale, discontinuous change of 
behavior as a function of composition for frequencies in the two- 
temperature regime. 2 

Figure 2 illustrates these claims more explicitly (the value 
f / p =  100 MHz/atm corresponds approximately to o5= 1 for the reduced 
frequency of Section 3.1; here f =  co/2~). At low frequencies there is no dis- 
persion, while for moderate frequencies (f/p < 50 MHz/atm) the dispersion 
is seen to be small and to vary smoothly with He mole fraction xl.  Above 
some critical frequency, however, there is a dramatic change in the disper- 
sion which can only be understood in terms of two competing roots of the 
dispersion relation, one going over smoothly to that describing ordinary 
sound propagation at low frequencies, the other a root related near (5 = 0 
to dissipative processes. Figure 3 shows that within a very narrow composi- 
tion range these two modes compete so closely at high enough frequencies 
that it makes no sense to call one or the other the mode describing sound 
propagation: physically, one must accept both as "sound" modes. The 
calculations also predict that this effect is characterized by a critical 
frequency f /p  ~ 70 MHz/atm and the critical composition x ~ 0.5. 

2 Foch e t  al. (221 obtained predictions for sound propagation in gas mixtures in the kinetic 
regime which showed no sign of this effect. Their approach, however, is based on a perturba- 
tion approach in which deviations from hydrodynamic behavior are assumed small. In a 
disparate-mass gas in the two-temperature regime, deviations from hydrodynamic behavior 
are so gross that the perturbation approach of ref. 24 has an almost vanishing region (in o3) 
of applicability. 
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Fig. 3. Dispersion in He Xe for He mole fractions x 1 = 0.46 < x~ and x l = 0.47 > x c. Lines as 
in Fig. 2. For f /p > 70 MHz/atm, dashed and solid lines overlap to graphical accuracy. 

Experimental confirmation of this prediction is not, however, as 
straightforward a process as might first appear, since the calculations lead- 
ing to Figs. 2 and 3 also predict (21-23) an unusually high absorpt ion in the 
region of the critical composi t ion and for frequencies f / p  < 70 MHz/a tm.  
Thus, sound dispersion in this regime can be expected to be particularly 
hard to measure, and one needs to take into account  a variety of 
experimental pointers in deciding the degree to which experiment confirms 
theory. Because of the approximate  nature of the basic equations, these 
pointers should be both  qualitative and semiquantitative, while detailed 
compar ison with experiment must  await full many-momen t  kinetic 
calculations 3 and possibly a more  extensive set of  experiments. 

The following are the salient features one should look for in experi- 
ment. 

1. There should be a critical frequency coc and a critical He mole 
fraction xc such that the observed dispersion shows qualitative and 
large-scale changes (a) for any intermediate composi t ion (say, 
0.3 ~<xl ~<0.7) as co goes through coc, and (b ) fo r  fixed frequencies co > coc 
as xl increases through xc. 

2. xc should be approximately xc,,~0.5; coc should correspond to an 
f / p  value of ~ 70 MHz/a tm.  

3 These would entail a generalization to mixtures of the BGK approximation discussed in 
detail by Cohen eta/., (23) together with the use of realistic intermolecular forces. 
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3. Absorption should be particularly high near xl = x~. and co--co C. 

4. For  frequencies above c%, the dispersion V/Vo should rise as a 
function of Xl if xl ~ xc (note that for lower frequencies it falls uniformly 
and continuously with x~). For  x < x~., at high enough frequencies, Vo/V 
should be greater than 1, while for x > x ~  the dispersion should change 
grossly and abruptly to values much less than 1. 

Sound propagation experiments were carried out on He-Xe mixtures 
in the two-temperature regime by Bowler. (~7 ~9) A summary of Bowler's 
experimental data on dispersion is shown in Fig. 4. The most evident points 
to note are that there is indeed a large-scale change in dispersion at high 
frequencies as x I goes from 0.2 to 0.8. This change occurs at roughly 
x~ ~0.5 for frequencies above f/p,~ 70 MHz/bar  ( ~ 7 0  MHz/atm). At the 
highest frequencies shown, the dispersion is a steeply rising function for 
x~ ~< 0.45 and a steeply falling function for Xl ~> 0.6. 
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Fig. 4. (a) Upper (lower) shaded band: experimental dispersion for He mole fractions 
x~ =0.20, 0.30, 0.40 (0.70, 0.80); crosses, x~ =0.45; circles, xl =0.60. Upper (lower) dashed 
line: two-temperature prediction for xz=0.45 (0.60). (b) Circles, experimental dispersion, 
x~ =0.50. Lower (upper) dashed line: two-temperature prediction for acoustic (interfering) 
mode. 
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Bowler also measured sound absorption in the two-temperature 
regime, (17'19) and obtained exceptionally high absorption coefficients for x 1 
in the range 0.4~x1~<0.6 and f / p > 7 0  MHz/atm. By far the highest 
absorption was that observed for x 1 = 0.5 and frequencies 
f /p ~ 100 MHz/atm. 

The dispersion observed by Bowler (17'~9) confirms the predictions of 
Huck and Johnson, (2~ in showing clear evidence of a competition between 
"sound" modes in a disparate-mass gas, and in verifying the predicted 
values for critical composition and frequency which should characterize 
this interference. 

Interestingly, it can also be shown that a similar mode competition is 
predicted by the equations of ordinary hydrodynamics. (2'18'19'24) These 
hydrodynamic calculations predict a critical composition of the order of 
0.254).3 and a critical frequency corresponding to f /p ~ 84-100 MHz/atm. 
This critical composition, in particular, differs widely from that found in 
the experiments of Bowler, which instead agrees with that predicted by 
two-temperature hydrodynamics. Thus, sound propagation experiments, as 
also light scattering, show clear evidence of the existence and importance 
of the predicted two-temperature regime in He-Xe gas mixtures. 

5. P H Y S I C A L  D I S C U S S I O N  

A picture is needed of the physical processes going on in a 
disparate-mass gas in the presence of the mode-interference effects dis- 
cussed here. Referring to Figs. 2 and 3, one sees that for frequencies above 
the critical frequency there can be as low wave (upper curves) or a fast 
wave (lower curves) in the gas, with the possibility that both may be pre- 
sent simultaneously if He and Xe are present in nearly equal proportions. 
As reference to Fig. 2 shows, the slow wave itself is characteristic of a 
Xe-rich mixture, while the fast wave is characteristic of one in which He 
predominates. 

Closer study of the phase and amplitude for the deviation of the 
hydrodynamic variables from equilibrium for each component of the 
mixture separately confirms (21) that the slow wave is a damped soundlike 
mode primarily carried by the Xe. The predicted sound speed correlates 
well with that expected in pure Xe at a pressure equal to the partial 
pressure of the Xe in the mixture. Thus, for high enough frequencies, the 
heavy component in a disparate-mass gas mixture can decouple from the 
mixture and support its own sound wave if its partial pressure is high 
enough. 

The fast wave, in He, is not, however, analogous to a sound wave in 
pure He. Instead, it may be understood as a dusty-gas mode, that is, one 
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which could exist in He in the presence of fixed scattering centers. In such 
a gas, at high enough frequencies and nearly equal numbers of light-gas 
molecules and scattering centers, one can show that 

Vo/  V =  ~ = Aco-1 /2  (44) 

where ~ is the coefficient of absorption and A a known positive constant. 
One finds (21) that the dispersion and absorption predicted by equations 
(24)-(31) obey this relation well for c0>2v~, so that at these frequencies 
the fast mode should be nonpropagating in the usual sense. For lower 
frequencies above critical, however, the damping per wavelength of the fast 
wave is lower than that predicted by a dusty-gas model, and it becomes 
possible to consider the fast mode, too, as a propagating mode of the 
mixture. 

The existence of a fast sound mode in He and a simultaneous slow 
mode in Xe is also evident in the density self-correlation functions predic- 
ted by two-temperature hydrodynamics/2m Figure 5 shows a sound peak 
(i.e., a maximum at nonzero frequency shift) in the He-He spectral func- 
tion Sit at a much higher frequency shift than that predicted to occur 
simultaneously in S= for Xe. This result cannot be verified directly in light 

i / f~ \ ' 

k_--'L \, 

X %  

l 1 ~ k I 

$22 

o 1.o 2 -o 

~/ kc ,- 

Fig. 5. Density self-correlation functions for He (Sn)  and Xe (S=), and cross-correlation $12 
in He-Xe for equal mole fractions at J~ = 0.7. Solid line: two-temperature prediction; dashed 
line: hydrodynamic prediction. 
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scattering experiments, however, since these are essentially sensitive to S= 
alone. 

It is also of interest to understand the critical point itself. One finds (2~ 
that in the region of this point, both modes should have identical physical 
characteristics: a damped soundlike mode is present in both species in the 
mixture, but the disturbance in the heavy species is 7z/2 out of phase with 
that of the light species. Each wave thus provides maximum damping for 
the other, and it is therefore not surprising that the absorption should be 
a maximum in this critical region. 

Finally, one may enquire into the origin of the dissipative mode that 
becomes soundlike near the critical point. The calculations of refs. 2, 3, and 
21 suggest that at low frequencies this mode is related to diffusion in the 
gas, being a mode in which the light and heavy species oscillate in 
antiphase. This identification, however, seems to depend on the precise 
approximations used in the calculation, and in particular on the inter- 
molecular force assumed (through the existence of a second critical point 
at lower frequencies, at which there is interference between two dissipative 
modes), o7~ 

6. F INAL C O M M E N T S  

Mode interference effects like those discussed here can arise in various 
contexts. An example with formal similarity to the present one is that of 
propagation of electromagnetic waves in the waveguide formed by the 
earth plus the ionosphere/2s) A more direct correspondence can be sought 
in the propagation of sound in various composite systems. Two com- 
pressive modes have in fact been observed experimentally in a system of 
fluid-saturated glass beads. (26) It has also been suggested recently (27) that a 
slow and a fast mode can propagate in liquid water at high enough 
frequency as a result of a certain amount of decoupling in a water molecule 
between the O atom and its associated H atoms. 

Finally, in He-Xe mixtures themselves, a different fast propagating 
mode has recently been.predicted by Campa and Cohen/1~ The possibility 
of such a mode again arises from mode interference. Its properties are, 
however, different from that of either of the modes discussed here. The 
predicted mode appears to be a true He-based sound mode, with a sound 
velocity appropriate to a gas in which the Xe atoms have been removed; 
moreover, it is predicted to appear in a very different k, co regime from that 
considered here. It is suggested that this mode may correspond in kind to 
a fast propagating mode observed recently (28) in a computer simulation 
modeling a liquid Lio, 8 Pbo.2 alloy. 
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APPENDIX.  D ISPARATE-MASS GAS TRANSPORT 
COEFFICIENTS 

Transport coefficients for disparate-mass gas mixture are given by 
Goebel et al. 7 based on a 13-moment form for the distribution function of 
each species. A Maxwell-type (~c~j/r 5) intermolecular repulsive force is 
assumed to exist between species i and j, where ~ctj is a force constant and 
r the intermolecular separation. In the disparate-mass approximation, one 
obtains for the diffusion coefficient 

D =  x2p~ (A.1) 
AplP2 

for the viscosity (heavy species) 

P2 (A.2) 
112 3B22p2 

and for the heat fluxes 
5kpl 5kp2 

21 - 2ml (2Bl lp l  + Ap2) '  22 = 4m2B22p2 (A.3) 

The frequency v~ governing the temperature separation is given by 

v~ =2Ankt, it-=mlmz/(ml +m2) (A.4) 

Here the collision parameters are defined by 

A - 2~rC~ 1 (5) (~-~) 1 / 2 - m l  + m2 

(A.5) 
g i  i 717/~2(5)( •ii ~1/2 

mi \ 2 m i /  

The 6gi(5) are tabulated constants (31) of magnitude about 0.4. 
The dimensionless transport coefficients of equations (26)-(30) are 

related to these as follows: 

= Dv~/c2x2 = 2 (A.6) 

it = 8#2Xz/3poD (A.7) 

~i = 2iTo/Po c2 (A.8) 

= 5(1 - i(5) 1 (a.9) 

where (5 - co/v~ is the reduced frequency of the disturbance being studied. 
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